Graph Theory Homework 8

Joshua Ruiter

September 28, 2018

Proposition 0.1 (Exercise 1). Let G = (V, E) be a connected graph with |V(G)| = n and maximum degree Δ and Laplacian L. Let $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$ be the eigenvalues of L. Then $\lambda_n \leq 2\Delta$, with equality if and only if G is bipartite and regular.

Proof. Let $f \in \mathbb{R}^n$ be an eigenvector of L with eigenvalue λ_n . Choose $v_0 \in V(G)$ so that $|f(v_0)| \ge |f(v_i)|$ for all i. By scaling, we may assume that $|f(v_0)| = 1$. Then

$$|\lambda_n| = |\lambda_n f(v_0)| = |(Lf)(v_0)| = \left| (\deg v_0) f(v_0) - \sum_{w \in \Gamma(v_0)} f(w) \right|$$

$$\leq \deg v_0 + \left| \sum_{w \in \Gamma(v_0)} f(w) \right| \leq \deg v_0 + \sum_{w \in \Gamma(v_0)} |f(w)| \leq \Delta + \sum_{i=1}^{\Delta} |1| = 2\Delta$$

If we have equality, then $\deg v_0 = \Delta$, and f(w) = -1 for $w \in \Gamma(v_0)$. Then all neighbors of v_0 also have |f(w)| maximal, so the same chain of inequalities shows that $\deg w = \Delta$, and f(v) = 1 for $v \in \Gamma(w)$. Since G is connected, this process inductively propagates to all vertices of G, so G is regular and bipartite (one color for +1 and another color for -1 vertices.)

Conversely, suppose that G is bipartite and regular. Then $f \in \mathbb{R}^n$ which takes value 1 on one maximal independent set and value -1 on the remaining vertices is an eigenvector of L with eigenvalue Δ .

Proposition 0.2 (Exercise 2a). Let A_n be the adjacency matrix of the cycle graph C_n and L_n be the Laplacian of C_n . The spectra $\{\mu_i\}$ of A_n and $\{\lambda_i\}$ of L_n are

$$\{\mu_i\} = \{\zeta + \zeta^{-1} : \zeta^n = 1\}$$

$$\{\lambda_i\} = \{2 - \zeta - \zeta^{-1} : \zeta^n = 1\}$$

(Note that these always turn out to be real.)

Proof. The adjacency matrix of C_n is

$$A_{n} = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 1 \\ 1 & 0 & 1 & 0 & \dots & \dots \\ 0 & 1 & 0 & 1 & \dots & \dots \\ 0 & 0 & 1 & 0 & \ddots & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & 1 \\ 1 & & & & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & \dots \\ 0 & 0 & 0 & 0 & \ddots & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & 1 \\ 1 & & & & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & \dots \\ 0 & 0 & 0 & 1 & \dots & \dots \\ 0 & 0 & 0 & 0 & \ddots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & 1 \\ 1 & & & & 0 & 0 \end{pmatrix}^{T}$$

denote the matrices on the RHS by B_n and B_n^T . Using the method of expansion by cofactors along the first column, we can compute that the characteristic polynomial of B_n is $\lambda^n - 1$. That is, the eigenvalues of B_n are precisely the *n*th roots of unity. The eigenvector of B_n associated to an *n*th root of unity ζ is $v_{\zeta} = (1, \zeta, \zeta^2, \ldots, \zeta^{n-1})$. Similarly, $B_n v_{\zeta} = \zeta^{-1} v_{\zeta}$. Thus

$$A_n v_{\zeta} = B_n v_{\zeta} + B_n^T v_{\zeta} = \zeta v_{\zeta} + \zeta^{-1} v_{\zeta} = (\zeta + \zeta^{-1}) v_{\zeta}$$

Since there are n such v_{ζ} , this gives all the eigenvectors and eigenvalues of A_n . Now let L_n be the Laplacian of C_n . Since C_n is 2-regular, $L_n = 2I_n - A_n$. Thus L_n has the same eigenvectors v_{ζ} as A_n , with eigenvalues

$$L_n v_{\zeta} = 2I_n v_{\zeta} - A_n v_{\zeta} = 2v_{\zeta} - (\zeta + \zeta^{-1})v_{\zeta} = (2 - \zeta - \zeta^{-1})v_{\zeta}$$

Let's take a moment to verify that the results of Theorem 5 (page 263 of Bollobas) hold for the spectra above.

- 1. Since $|\zeta| = 1$, we have $|\mu| = |\zeta + \zeta^{-1}| \le |\zeta| + |\zeta^{-1}| \le 2$.
- 2. The maximal degree Δ for C_n is 2, and C_n is 2-regular, so Δ should be an eigenvalue of A_n . And it is, since $\zeta = 1$ is always an nth root of unity, and $1 + 1^{-1} = 2$.
- 3. When n is even, C_n is bipartite, in which case -1 is an nth root of unity and $-1 + -1^{-1} = -2$ is an eigenvalue of A_n .
- 4. When n is even, C_n is biparite, so the spectrum should be symmetric about zero. If ζ is an nth root of unity and n is even, then $-\zeta$ is also an nth root of unity, so if $\mu = \zeta + \zeta^{-1}$ is an eigenvalue, then $-\zeta + (-\zeta^{-1}) = -(\zeta + \zeta^{-1}) = \mu$ is also an eigenvalue.
- 5. Also note that the result from Exercise 1 is satisfied, since $\zeta = -1$ is an eigenvalue of the Laplacian precisely when n is odd, and $2 (-1) (-1)^{-1} = 4 = 2\Delta$.

Proposition 0.3 (Exercise 2b). Let $A_{n,m}$ be the adjacency matrix of the complete bipartite graph $K_{n,m}$, and let $L_{n,m}$ be the Laplacian. The spectra $\{\mu_i\}$ of $A_{n,m}$ is

$$\{\mu_i\} = \{0, \pm \sqrt{mn}\}$$

where \sqrt{mn} , $-\sqrt{mn}$ have multiplicity one and zero has multiplicity m+n-2. The spectrum $\{\lambda_i\}$ of $L_{n,m}$ is

$$\{\lambda_i\} = \{0,m,n,m+n\}$$

Proof. If we order the vertices of $K_{n,m}$ so that the first n vertices are one independent set and the other m vertices come after, then the matrix $A_{n,m}$ has a very simple block form.

$$A_{n,m} = \begin{pmatrix} 0 & \dots & 0 & 1 & \dots & 1 \\ \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 1 & \dots & 1 \\ 1 & \dots & 1 & 0 & \dots & 0 \\ \vdots & & \vdots & \vdots & \vdots & \vdots \\ 1 & \dots & 1 & 0 & \dots & 0 \end{pmatrix}$$

Let $x = (x_1, ..., x_n, x_{n+1}, ..., x_{n+m})$, then

$$A_{n,m}x = \begin{pmatrix} \sum_{i=n+1}^{n+m} x_i \\ \vdots \\ \sum_{i=n+1}^{n+m} x_i \\ \sum_{i=1}^{n} x_i \\ \vdots \\ \sum_{i=1}^{n} x_i \end{pmatrix}$$

Thus if x is an eigenvector of $A_{n,m}$ with eigenvalue $\mu \neq 0$, then x has the form $(a, a, a, \ldots, b, b, b, \ldots)$, and then the eigenvalue must be $\pm \sqrt{mn}$ (mild computations omitted), provided $a \neq 0$ or $b \neq 0$. Thus the only nonzero eigenvalues of $A_{n,m}$ are $\pm \sqrt{mn}$. The associated eigenvectors are $(\sqrt{m}, \sqrt{m}, \ldots, \sqrt{n}, \sqrt{n}, \ldots)$ and $(-\sqrt{m}, -\sqrt{m}, \ldots, \sqrt{n}, \sqrt{n}, \ldots)$. As we computed, these span the eigenspace associated to $\mu = \sqrt{mn}$, so all the other eigenvalues are zero, so the eigenvalue zero has multiplicity m + n - 2.

Now consider $L_{n,m}$, which also has a simple form.

$$L_{n,m} = \begin{pmatrix} m & 0 & \dots & 0 & -1 & -1 & \dots & -1 \\ 0 & m & \dots & 0 & -1 & -1 & \dots & -1 \\ \vdots & & \ddots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & m & -1 & -1 & \dots & -1 \\ -1 & -1 & \dots & -1 & n & 0 & \dots & 0 \\ -1 & -1 & \dots & -1 & 0 & n & \dots & 0 \\ \vdots & \vdots & & \vdots & \vdots & & \ddots & \vdots \\ -1 & -1 & \dots & -1 & 0 & \dots & 0 & n \end{pmatrix}$$

Let $x = (x_1, \ldots, x_{n+m})$, then

$$L_{n,m}x = \begin{pmatrix} mx_1 - \sum_{i=n+1}^{n+m} x_i \\ mx_2 - \sum_{i=n+1}^{n+m} x_i \\ \vdots \\ mx_n - \sum_{i=n+1}^{n+m} x_i \\ nx_{n+1} - \sum_{i=1}^{n} x_i \\ \vdots \\ nx_{n+m} - \sum_{i=1}^{n} x_i \end{pmatrix}$$

We know that 0 is an eigenvalue with eigenspace of dimension 1. We also see by inspection that m+n is an eigenvalue, with eigenvector $(m, \ldots, m, -n, \ldots, -n)$. The equation $L_{m,n}x = (m+n)x$ constrains all the entries x_i , so the eigenvalue has multiplicity 1.

By looking at $L_{n,m}$, we guess that m, n should be eigenvalues as well, and they are. If $x = (x_1, \ldots, x_{n+m})$ is an eigenvector with eigenvalue m, we get constraint equations

$$mx_j - \sum_{i=n+1}^{n+m} x_i = mx_j$$
 for $j = 1, \dots, n$
 $nx_j - \sum_{i=1}^n x_i = mx_j$ for $j = n+1, \dots, n+m$

The first equation says $\sum_{i=n+1}^{n+m} x_i = 0$, and the second implies $x_j = \left(\sum_{i=1}^n x_i\right)/(m-n)$ for $n+1 \le j \le n+m$, so $x_{n+1} = \ldots = x_{n+m}$. But then $x_{n+1} = \ldots = x_{n+m} = 0$, by the first equation. Then looking again at the second equation, $\sum_{i=1}^n x_i = 0$. These are the only constraints on the eigenspace associated to m, so we have the following basis for the m eigenspace.

$$e_{1} - e_{2} = \begin{pmatrix} 1 \\ -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_{1} - e_{3} = \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \\ \vdots \end{pmatrix}, \dots, e_{1} - e_{n} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \\ 0 \\ \vdots \end{pmatrix}$$

Thus the eigenvalue m has multiplicity n-1. Since we have complete symmetry between m and n, the eigenvalue n has multiplicity m-1. Thus

$$\{\lambda_i\} = \{0, m, n, m+n\}$$

and there can be no others because these eigenvalues counted with multiplicity give n+m eigenvalues.

We pause to check that the spectra computed in 2b satisfy Theorem 5 (page 263) of Bollobas.

- 1. $K_{n,m}$ is regular if and only if n=m, in which case $\sqrt{mn}=\sqrt{m^2}=m=\Delta$ is an eigenvalue.
- 2. If $-\Delta$ is an eigenvalue, then $-\Delta = -\sqrt{mn}$ which implies that mn is a square, so m = n and $K_{m,n}$ is regular (it is always bipartite, of course).
- 3. $K_{n,m}$ is bipartite, and the spectrum of the adjacency matrix is symmetric.
- 4. Also note that the property from Exercise 1 holds, $\lambda_n = m + n \le 2\Delta = 2 \max(m, n)$, with equality if and only if m = n, in which case $K_{m,n}$ is regular (and bipartite).