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Proposition 0.1 (Exercise 1). Let G = (V,E) be a connected graph with |V (G)| = n and
maximum degree ∆ and Laplacian L. Let 0 = λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of L.
Then λn ≤ 2∆, with equality if and only if G is bipartite and regular.

Proof. Let f ∈ Rn be an eigenvector of L with eigenvalue λn. Choose v0 ∈ V (G) so that
|f(v0)| ≥ |f(vi)| for all i. By scaling, we may assume that |f(v0)| = 1. Then

|λn| = |λnf(v0)| = |(Lf)(v0)| =

∣∣∣∣∣∣(deg v0)f(v0)−
∑

w∈Γ(v0)

f(w)

∣∣∣∣∣∣
≤ deg v0 +

∣∣∣∣∣∣
∑

w∈Γ(v0)

f(w)

∣∣∣∣∣∣ ≤ deg v0 +
∑

w∈Γ(v0)

|f(w)| ≤ ∆ +
∆∑
i=1

|1| = 2∆

If we have equality, then deg v0 = ∆, and f(w) = −1 for w ∈ Γ(v0). Then all neighbors
of v0 also have |f(w)| maximal, so the same chain of inequalities shows that degw = ∆,
and f(v) = 1 for v ∈ Γ(w). Since G is connected, this process inductively propagates to
all vertices of G, so G is regular and bipartite (one color for +1 and another color for -1
vertices.)

Conversely, suppose that G is bipartite and regular. Then f ∈ Rn which takes value 1
on one maximal independent set and value -1 on the remaining vertices is an eigenvector of
L with eigenvalue ∆.

Proposition 0.2 (Exercise 2a). Let An be the adjacency matrix of the cycle graph Cn and
Ln be the Laplacian of Cn. The spectra {µi} of An and {λi} of Ln are

{µi} =
{
ζ + ζ−1 : ζn = 1

}
{λi} =

{
2− ζ − ζ−1 : ζn = 1

}
(Note that these always turn out to be real.)
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Proof. The adjacency matrix of Cn is

An =



0 1 0 0 . . . 1
1 0 1 0 . . .
0 1 0 1 . . .

0 0 1 0
. . .

...
...

...
...

. . . 1
1 1 0


=



0 1 0 0 . . . 0
0 0 1 0 . . .
0 0 0 1 . . .

0 0 0 0
. . .

...
...

...
...

. . . 1
1 0 0


+



0 1 0 0 . . . 0
0 0 1 0 . . .
0 0 0 1 . . .

0 0 0 0
. . .

...
...

...
...

. . . 1
1 0 0



T

denote the matrices on the RHS by Bn and BT
n . Using the method of expansion by cofactors

along the first column, we can compute that the characteristic polynomial of Bn is λn − 1.
That is, the eigenvalues of Bn are precisely the nth roots of unity. The eigenvector of Bn

associated to an nth root of unity ζ is vζ = (1, ζ, ζ2, . . . , ζn−1). Similarly, Bnvζ = ζ−1vζ .
Thus

Anvζ = Bnvζ +BT
n vζ = ζvζ + ζ−1vζ = (ζ + ζ−1)vζ

Since there are n such vζ , this gives all the eigenvectors and eigenvalues of An. Now let
Ln be the Laplacian of Cn. Since Cn is 2-regular, Ln = 2In − An. Thus Ln has the same
eigenvectors vζ as An, with eigenvalues

Lnvζ = 2Invζ − Anvζ = 2vζ − (ζ + ζ−1)vζ = (2− ζ − ζ−1)vζ

Let’s take a moment to verify that the results of Theorem 5 (page 263 of Bollobas) hold for
the spectra above.

1. Since |ζ| = 1, we have |µ| = |ζ + ζ−1| ≤ |ζ|+ |ζ−1| ≤ 2.

2. The maximal degree ∆ for Cn is 2, and Cn is 2-regular, so ∆ should be an eigenvalue
of An. And it is, since ζ = 1 is always an nth root of unity, and 1 + 1−1 = 2.

3. When n is even, Cn is bipartite, in which case −1 is an nth root of unity and −1 +
−1−1 = −2 is an eigenvalue of An.

4. When n is even, Cn is biparite, so the spectrum should be symmetric about zero. If
ζ is an nth root of unity and n is even, then −ζ is also an nth root of unity, so if
µ = ζ+ ζ−1 is an eigenvalue, then −ζ+ (−ζ−1) = −(ζ+ ζ−1) = µ is also an eigenvalue.

5. Also note that the result from Exercise 1 is satisfied, since ζ = −1 is an eigenvalue of
the Laplacian precisely when n is odd, and 2− (−1)− (−1)−1 = 4 = 2∆.

Proposition 0.3 (Exercise 2b). Let An,m be the adjacency matrix of the complete bipartite
graph Kn,m, and let Ln,m be the Laplacian. The spectra {µi} of An,m is

{µi} =
{

0,±
√
mn
}

where
√
mn,−

√
mn have multiplicity one and zero has multiplicity m+n−2. The spectrum

{λi} of Ln,m is
{λi} = {0,m, n,m+ n}
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Proof. If we order the vertices of Kn,m so that the first n vertices are one independent set
and the other m vertices come after, then the matrix An,m has a very simple block form.

An,m =



0 . . . 0 1 . . . 1
...

...
...

...
0 . . . 0 1 . . . 1
1 . . . 1 0 . . . 0
...

...
...

...
1 . . . 1 0 . . . 0


Let x = (x1, . . . , xn, xn+1, . . . , xn+m), then

An,mx =



∑n+m
i=n+1 xi

...∑n+m
i=n+1 xi∑n
i=1 xi
...∑n
i=1 xi


Thus if x is an eigenvector ofAn,m with eigenvalue µ 6= 0, then x has the form (a, a, a, . . . , b, b, b, . . .),
and then the eigenvalue must be ±

√
mn (mild computations omitted), provided a 6= 0 or

b 6= 0. Thus the only nonzero eigenvalues of An,m are ±
√
mn. The associated eigenvectors

are (
√
m,
√
m, . . . ,

√
n,
√
n, . . .) and (−

√
m,−

√
m, . . . ,

√
n,
√
n, . . .). As we computed, these

span the eigenspace associated to µ =
√
mn, so all the other eigenvalues are zero, so the

eigenvalue zero has multiplicity m+ n− 2.
Now consider Ln,m, which also has a simple form.

Ln,m =



m 0 . . . 0 −1 −1 . . . −1
0 m . . . 0 −1 −1 . . . −1
...

. . .
...

...
...

...
0 0 . . . m −1 −1 . . . −1
−1 −1 . . . −1 n 0 . . . 0
−1 −1 . . . −1 0 n . . . 0
...

...
...

...
. . .

...
−1 −1 . . . −1 0 . . . 0 n


Let x = (x1, . . . , xn+m), then

Ln,mx =



mx1 −
∑n+m

i=n+1 xi
mx2 −

∑n+m
i=n+1 xi

...

mxn −
∑n+m

i=n+1 xi
nxn+1 −

∑n
i=1 xi

...
nxn+m −

∑n
i=1 xi


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We know that 0 is an eigenvalue with eigenspace of dimension 1. We also see by inspection
that m+n is an eigenvalue, with eigenvector (m, . . . ,m,−n, . . . ,−n). The equation Lm,nx =
(m+ n)x constrains all the entries xi, so the eigenvalue has multiplicity 1.

By looking at Ln,m, we guess that m,n should be eigenvalues as well, and they are. If
x = (x1, . . . , xn+m) is an eigenvector with eigenvalue m, we get constraint equations

mxj −
n+m∑
i=n+1

xi = mxj for j = 1, . . . , n

nxj −
n∑
i=1

xi = mxj for j = n+ 1, . . . , n+m

The first equation says
n+m∑
i=n+1

xi = 0, and the second implies xj =

(
n∑
i=1

xi

)
/(m − n) for

n + 1 ≤ j ≤ n + m, so xn+1 = . . . = xn+m. But then xn+1 = . . . = xn+m = 0, by the

first equation. Then looking again at the second equation,
n∑
i=1

xi = 0. These are the only

constraints on the eigenspace associated to m, so we have the following basis for the m
eigenspace.

e1 − e2 =


1
−1
0
...
0

 , e1 − e3 =


1
0
−1
0
...

 , . . . , e1 − en =



1
0
...
0
−1
0
...


Thus the eigenvalue m has multiplicity n− 1. Since we have complete symmetry between m
and n, the eigenvalue n has multiplicity m− 1. Thus

{λi} = {0,m, n,m+ n}

and there can be no others because these eigenvalues counted with multiplicity give n + m
eigenvalues.

We pause to check that the spectra computed in 2b satisfy Theorem 5 (page 263) of Bollobas.

1. Kn,m is regular if and only if n = m, in which case
√
mn =

√
m2 = m = ∆ is an

eigenvalue.

2. If −∆ is an eigenvalue, then −∆ = −
√
mn which implies that mn is a square, so

m = n and Km,n is regular (it is always bipartite, of course).

3. Kn,m is bipartite, and the spectrum of the adjacency matrix is symmetric.

4. Also note that the property from Exercise 1 holds, λn = m + n ≤ 2∆ = 2 max(m,n),
with equality if and only if m = n, in which case Km,n is regular (and bipartite).
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